Математическая теория множеств. «Теория систем и системный анализ

Не помню, когда я впервые узнал про топологию, но меня эта наука сразу заинтересовала. Чайник превращается в бублик, сфера выворачивается наизнанку. Многие слышали про это. Но у тех, кто хочет углубиться в эту тему на более серьёзном уровне, часто возникают трудности. Особенно это относится к освоению самых начальных понятий, которые по своей сути очень абстрактны. Более того, многие источники, как будто специально стремятся запутать читателя. Скажем русская вики даёт весьма туманную формулировку того, чем занимается топология. Там говорится, что это наука изучающая топологические пространства . В статье про топологические пространства читатель может узнать, что топологические пространства - это пространства снабжённые топологией . Такие объяснения в стиле лемовских сепулек не очень проясняют суть предмета. Я попробую далее изложить основные базовые понятия в более ясной форме. В моей заметке не будет превращающихся чайников и бубликов, но будут сделаны первые шаги, которые позволят в конце концов научиться этой магии.

Впрочем, так как я не математик, а стопроцентный гуманитарий, то вполне возможно, что написанное ниже - враньё! Ну, или по крайней мере часть.

Впервые я написал эту заметку, как начало цикла статей о топологии, для своих гуманитарных друзей, но никто из них читать ее не стал. Исправленную и расширенную версию я решил выложить на хабр. Мне показалось, что здесь существует определенный интерес к этой теме и статей как раз такого рода еще не было. Заранее благодарен за все комментарии об ошибках и неточностях. Предупреждаю, что я использую много картинок.

Начнем с краткого повторения теории множеств. Думаю, большинство читателей хорошо с ней знакомы, но тем не менее напомню основы.

Итак, считается, что определения у множества нет и, что мы интуитивно понимаем, что это такое. Кантор говорил так: «Под «множеством» мы понимаем соединение в некое целое M определённых хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться «элементами» множества M)». Конечно, это просто иносказательное описание, а не математическое определение.
Теория множеств известна (прошу простить за каламбур) множеством удивительных парадоксов. Например . С ней также связан кризис математики в начале XX-го века.

Теория множеств существует в нескольких вариантах, таких как ZFC или NBG и других. Вариантом теории являетсятеория типов , которая весьма важна для программистов. Наконец, некоторые математики предлагает вместо теории множеств в качестве фундамента математики использовать теорию категорий, о которой много написано на Хабре. Теория типов и теория множеств описывают математические объекты как бы «изнутри», а теория категорий не интересуется их внутренним строением, а только как они взаимодействуют, т.е. даёт их «внешнюю» характеристику.
Для нас важны только самые начальные основы теории множеств.

Множества бывают конечными.

Бывают бесконечными. Например, множество целых чисел, которое обозначается буквой ℤ (или просто Z, если у вас на клавиатуре нет фигурных букв).

Наконец, есть пустое множество. Оно ровно одно во всей Вселенной. Имеется простое доказательство этого факта, но я не буду его здесь приводить.

Если множество бесконечно, оно бывает счетным . Счетные - те множества, элементы которых можно перенумеровать натуральными числами. Само множество натуральных чисел, как вы догадались, тоже счетно. А вот как можно пронумеровать целые числа.

С рациональными числами сложнее, но и они поддаются нумерации. Этот способ называется диагональным процессом и выглядит, как на картинке внизу.

Мы зигзагом движемся по рациональным числам, начиная с 1. При этом каждому числу, которое у нас получается, присваиваем четный номер. Отрицательные рациональные числа считаются тем же способом, только номера нечетные, начиная с 3. Ноль традиционно получает первый номер. Таким образом видно, что все рациональные числа можно пронумеровать. Все числа вроде 4,87592692976340586068 или 1,00000000000001, или -9092, или даже 42 получают свой номер в этой таблице. Тем не менее, сюда попадают не все числа. Например, √2 не получит номера. Когда-то это очень огорчило греков. Говорят, того парня, который открыл иррациональные числа, утопили.

Обобщением понятия размера для множеств является мощность . Мощность конечных множеств равна числу их элементов. Мощность бесконечных множеств обозначается еврейской буквой алеф с индексом. Самая маленькая бесконечная мощность-это мощность 0 . Она равна мощности счетных множеств. Как видим, таким образом, натуральных чисел, так же много, как и целых или рациональных. Странно, но факт. Следующая - мощность континуума . Она обозначается 1 . Это мощность множества вещественных чисел ℝ, например. Существует гипотеза о том, что мощность континуума и мощность алеф-один - одно и то же. Т.е. что нет никакой промежуточной мощности меду счетными множествами и континуумом.

Над множествами можно проводить различные операции и получать новые множества.

1. Множества можно объединять.

3. Можно искать пересечение множеств.

Собственно это все о множествах, что нужно знать для целей этой заметки. Теперь мы можем приступить к самой топологии.
Топология - это наука, которая изучает множества с определенной структурой. Эта структура также называется топологией.
Пусть у нас есть некоторое непустое множество S.
Пусть же у этого множества будет некоторая структура, которая описывается с помощью множества, которое мы назовем Т. Т представляет собой множество подмножеств множества S такое, что:

1. Само S и ∅ принадлежат T.
2. Любое объединение произвольных семейств элементов T принадлежит T.
3. Пересечение произвольного конечного семейства элементов T принадлежит T.

Если эти три пункта выполняются, то наша структура является топологией T на множестве S. Элементы множества T называются открытыми множествами на S в топологии T. Дополнением к открытым множествам являются замкнутые множества. Важно отметить, что если множество открыто, это еще не означает, что оно не замкнуто и наоборот. Кроме того в данном множестве относительно некоторой топологии могут быть подмножества, которые не являются ни открытыми, ни замкнутыми.

Приведем пример. Пусть у нас есть множество, состоящее из трех цветных треугольников.

Самая простая топология на нем называется антидискретной топологией . Вот она.

Эту топологию, также называют топологией слипшихся точек . Она состоит из самого множества и из пустого множества. Это действительно удовлетворяет аксиомам топологии.

На одном множестве можно задать несколько топологий. Вот еще одна очень примитивная топология, которая бывает. Она называется дискретной. Это топология, которая состоит из всех подмножеств данного множества.

А вот еще топология. Она задана на множестве из 7 разноцветных звезд S, которые я обозначил буквами. Убедитесь, что это топология. Я в этом не уверен, вдруг я пропустил, какое-то объединение или пересечение. На этой картинке должно быть само множество S, пустое множество, пересечения и объединения всех остальных элементов топологии также должны быть на картинке.

Пара из топологии и множества на котором она задана называется топологическим пространством .

Если в множестве много точек (не говоря уже о том, что их может быть бесконечно много), то перечислить все открытые множества может быть проблематично. Например, для дискретной топологии на множестве из трех элементов, надо составить список из 8 множеств. А для 4-элементного множества дискретная топология будет насчитывать уже 16, для 5 - 32, для 6 -64 и так далее. Для того, чтобы не перечислять все открытые множества используется как бы сокращенная запись - выписываются те элементы, объединения которых могут дать, все открытые множества. Это называется базой топологии. Например, для дискретной топологии пространства из трех треугольников - это будут три треугольника взятые в отдельности, потому, что объединяя их, можно получить все остальные открытые множества в данной топологии. Говорят, что база генерирует топологию. Множества, элементы которого генерируют базу, называют предбазой.

Ниже пример базы для дискретной топологии на множестве из пяти звезд. Как видите, в данном случае база состоит всего из пяти элементов, в то время как в топологии целых 32 подмножества. Согласитесь, использовать базу для описания топологии - гораздо удобнее.

Для чего нужны открытые множества? В каком-то смысле они дают представление о «близости» между точками и о различии между ними. Если точки принадлежат двум разным открытым множествам или если одна точка находится в открытом множестве, в котором не находится вторая, то они топологически различаются. В антидискретной топологии все точки в этом смысле неразличимы, они как бы слиплись. Наоборот, в дискретной топологии все точки имеют различие.

С понятием открытого множества неразрывно связано понятие окрестности . Некоторые авторы дают определение топологии не через открытые множества, а через окрестности. Окрестность точки p - это множество, которое содержит открытый шар с центром в этой точке. Например, на рисунке ниже показаны окрестности и не окрестности точек. Множество S 1 является окрестностью точки p, а множество S 2 нет.

Связь между открытым множеством и октестностью можно сформулировать так. Открытое множество - такое множество, каждый элемент которого имеет некоторую окрестность. Или наоборот можно сказать, что множество открыто, если оно является окрестностью любой своей точки.

Все это самые базовые понятия топологии. Отсюда еще не ясно как выворачивать сферы наизнанку. Возможно в будущем, я смогу добраться и до такого рода тем (если сам разберусь).

New Page 1

Математический анализ для чайников. Урок 1. Множества.

Понятие множества

Множество - это совокупность некоторых объектов. Какие могут быть множества? Во первых, конечные или бесконечные. Например, множество спичек в коробке - это конечное множество, их можно взять и сосчитать. Количество песчинок на пляже сосчитать гораздо труднее, но, в принципе, возможно. И это количество выражается каким то конечным числом. Так что множество песчинок на пляже тоже конечно. А вот множество точек на прямо это множество бесконечное. Так как во первых, прямая сама по себе бесконечная и на ней можно поставить сколько угодно точек. Множество точек отрезка прямой тоже бесконечное. Потому что теоретически точка может быть сколь угодно маленькая. Конечно, мы физически не сможем нарисовать точку, размером, например, меньше размера атома, но, с точки зрения математики точка не имеет размера. Ее размер равен нулю. А что получается, если разделить на нуль какое то число? Правильно, бесконечность. И хотя множество точек на прямой и на отрезке стремится к бесконечности, это не одно и тоже. Множество - это не количество чего то там, а совокупность каких либо объектов. И равными считаются только те множества, которые содержат абсолютно одинаковые объекты. Если в одном множество содержит те же объекты, что и другое множество, но плюс еще один какой нибудь "левый" объект, то это уже не равные множества.

Рассмотрим пример. Пусть у нас имеется два множества. Первое - совокупность все точек на прямой. Второе - совокупность всех точек на отрезке прямой. Почему они не равны? Во первых, отрезок и прямая могут даже не пересекаться. Тогда они уж точно не равны, так как содержат в себе абсолютно разные точки. Если они пересекаются, то у них только одна общая точка. Все остальные так же разные. А если отрезок лежит на прямой? Тогда все точки отрезка являются и точками прямой. Но не все точки прямой являются точками отрезка. Так что и в этом случае множества нельзя считать равными (одинаковыми).

Каждое множество задается правилом, которое однозначно определяет, принадлежит элемент к этому множеству или нет. Какие могут быть эти правила? Например, если множество конечное, можно тупо перечислить все его объекты. Можно задать диапазон. Например, все целые числа от 1 до 10. Это будет тоже конечное множество, но тут мы не перечисляем его элементы, а формулируем правило. Или неравенство, к примеру, все числа, больше 10. Это будет уже бесконечное множество, поскольку нельзя назвать самое большое число - какие бы число мы не называли, всегда есть это число плюс 1.

Как правило, множества обозначаются прописными буквами латинского алфавита A, B, C и так далее. Если множество состоит из конкретных элементов и мы хотим задать его списком этих элементов, то мы можем заключить этот список в фигурные скобки, например A={a, b, c, d}. Если a является элемент множества A, то это записывают следующим образом: a Î A . Если же a не является элементом множества A, то пишут a Ï A. Одним из важных множеств является множество N всех натуральных чисел N={1,2,3,...,} . Существует также специальное, так называемое пустое множество, которое не содержит ни одного элемента. Пустое множество обозначается символом Æ .

Определение 1 (определение равенства множеств). Множества А и B равны, если они состоят из одних и тех же элементов, то есть, если из x Î A следует x Î B и обратно, из x Î B следует x Î A.

Формально равенство двух множеств записывается следующим образом:

(А=В ) := " x (( x Î A ) Û (x Î B )),

Это означает, что для любого объекта x соотношения x Î A и x Î B равносильны.

Здесь " – квантор всеобщности (" x читается как "для каждого x ").

Определение 2 (определение подмножества). Множество А является подмножеством множества В , если любое х принадлежащее множеству А , принадлежит множеству В. Формальное это можно представить в виде выражения:

(A Ì B ) := " x ((x Î A ) Þ (x Î B ))

Если A Ì B, но A ¹ B, то A – собственное подмножество множества В. В качестве примера можно привести опять же прямую и отрезок. Если отрезок лежит на прямой, то множество его точек являются подмножеством точек этой прямой. Или, другой пример. Множество целых чисел, которые делятся без остатка на 3, является подмножеством множества целых чисел.

Замечание. Пустое множество является подмножеством любого множества.

Операции над множествами

Над множествами возможны следующие операции:

Объединение. Суть этой операции состоит в том, что бы два множества объединить в одно, содержащее элементы каждого из объединяемых множеств. Формально это выглядит так:

C=A È B: = {x:x Î A или x Î B }

Пример. Решим неравенство | 2 x + 3 | > 7.

Из него следует либо неравенство 2x+3 >7, для 2x+3 ≥0, тогда x>2

либо неравенство 2x+3 <-7, для 2x+3 <0, тогда x<-5.

Множеством решений данного неравенство является объединения множеств (-∞,-5) È (2, ∞).

Давайте проверим. Посчитаем значение выражение | 2 x + 3 | для нескольких точек, лежащих и не лежащих в данном диапазоне:

x | 2 x + 3 |
-10 17
-6 9
-5 7
-4 5
-2 1
0 3
1 5
2 7
3 9
5 13

Как видим, все решено правильно (красным обозначены пограничные диапазоны).

Пересечение. Пересечением называется операция создания нового множества из двух, содержащих элементы, которые входят в оба этих множества. Что бы изобразить это наглядно, давайте представим, что у нас есть два множества точек на плоскости, а именно фигура A и фигура B. Их пересечение обозначает фигуру C - это и есть результа операции пересечения множеств:

Формально операция пересечения множеств записывается так:

C=A Ç B := {x: x Î A и x Î B }

Пример. Пусть у нас есть множество Тогда C=A Ç B = {5,6,7}

Вычитание. Вычитание множеств - это исключение из вычитаемого множества тех элементах, которые содержатся в вычитаемом и вычитателе:

Формально вычитание множества записывается так:

A \ B: = {x:x Î A и x Ï B }

Пример. Пусть у нас есть множество A={1,2,3,4,5,6,7}, B={5,6,7,8,9,10}. Тогда C=A \ B = { 1,2,3,4}

Дополнение. Дополнение - это унарная операция (операция не над двумя, а над одним множеством). Эта операция является результатом вычитания данного множества из полного универсального множества (множества, которое включает в себя все остальные множества).

A : = {x:x Î U и x Ï A} = U \ A

Графически это можно изобразить в виде:

Симметричная разность. В отличии от обычной разности при симметричной разности множеств элементы остаются только те, что присутствуют либо в одном, либо в другом множестве. Или, говоря простым языком, из двух множеств создается, но из него исключаются те элементы, которые есть и в том и в другом множестве:

Математически это можно выразить так:

A D B:= (A \ B ) È (B \ A ) = (A È B ) \ (A Ç B )

Свойства операций над множествами.

Из определений объединения и пересечения множеств следует, что операции пересечения и объединения обладают следующими свойствами:

  1. Коммутативность.

A È B=B È A
A
Ç B=B Ç A

  1. Ассоциативность.

(A È B ) È C=A È (B È C )
(A Ç B ) Ç C= A Ç (B Ç C )

На математическом кружке вместе с учащимися рассматривался ряд задач, благодаря наглядности которых, процесс решения становится понятным и интересным. На первый взгляд им хочется составить систему уравнений, но в процессе решения остается много неизвестных, что ставит их в тупик. Для того, чтобы уметь решать эти задачи, необходимо предварительно рассмотреть некоторые теоретические разделы теории множеств.

Введем определение множества, а так же некоторые обозначения.

Под множеством мы будем понимать такой набор, группу, коллекцию элементов, обладающих каким-либо общим для них всех свойством или признаком.

Множества обозначим А, В, С…, а элементы множеств а, b, с…, используя латинский алфавит.

Можно сделать такую запись определения множества:

“” – принадлежит;
“=>“ – следовательно;
“ø” – пустое множество, т.е. не содержащее ни одного элемента.

Два множества будем называть равными, если они состоят из одних и тех же элементов

Например:

Если любой элемент из множества А принадлежит и множеству В, то говорят, что множество А включено в множество В, или множество А является подмножеством множества В, или А является частью В, т.е. если , то , где “С” знак подмножества или включения.

Графически это выглядит так (рис.1):

Можно дать другое определение равных множеств. Два множества называются равными, если они являются взаимными подмножествами.

Рассмотрим операции над множествами и их графическую иллюстрацию (рис.2).

Объединением множеств А и В называется множество С, образованное всеми элементами, которые принадлежат хотя бы одному из множеств А или В. Слова “или ” ключевое в понимании элементов входящих в объединение множеств.

Это определение можно записать с помощью обозначений:

А υ В, где

где “ υ ” – знак объединения,

“ / ” – заменяет слова ”таких что“

Пресечение двух множеств А и В называется множество С, образованное всеми элементами, которые принадлежат и множеству А, и множеству В. Здесь уже ключевое слово “и”. Запишем коротко:

А ∩ В = С, где

“∩“ – знак пересечения. (рис.3)

Обозначим буквой Е основное или универсальное множество, где A С Е (“”- любо число), т.е. А Е = Е; АЕ =А

Множество всех элементов универсального множества Е, не принадлежащих множеству А называется дополнением множества А до Е и обозначается ĀЕ или Ā (рис.4)

Е

Примерами для понимания этих понятий являются свойства:

А Ā=Е Ø = Е Е Ā=Ā

А ∩ Ā= Ø Ē = Ø (Ā)=А

Свойства дополнения имеют свойства двойственности:

Введем еще одно понятие – это мощность множества.

Для конечного множества А через m (A) обозначим число элементов в множестве А.

Из определение следуют свойства:

m (A) + m (Ā) = m (E)

А = В => m(A) = m(B)

Для любых конечных множеств справедливы так же утверждения:

m (AB) =m (A) + m (В) – m (А∩В)

m (A∩B) = m (A) + m (В) – m (АВ)

m (ABC) = m (A) + m (В) + m (С)– m (А∩В) - m (А∩С) – m (В∩С) – m (А∩В∩С).

А теперь рассмотрим ряд задач, которые удобно решать, используя графическую иллюстрацию.

Задача №1

В олимпиаде по математике для абитуриентов приняло участие 40 учащихся, им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. По алгебре решили задачу 20 человек, по геометрии – 18 человек, по тригонометрии – 18 человек.

По алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека.

  1. Сколько учащихся решили все задачи?
  2. Сколько учащихся решили только две задачи?
  3. Сколько учащихся решили только одну задачу?

Задача № 2

Первую или вторую контрольные работы по математике успешно написали 33 студента, первую или третью – 31 студент, вторую или третью – 32 студента. Не менее двух контрольных работ выполнили 20 студентов.

Сколько студентов успешно решили только одну контрольную работу?

Задача № 3

В классе 35 учеников. Каждый из них пользуется хотя бы одним из видов городского транспорта: метро, автобусом и троллейбусом. Всеми тремя видами транспорта пользуются 6 учеников, метро и автобусом – 15 учеников, метро и троллейбусом – 13 учеников, троллейбусом и автобусом – 9 учеников.

Сколько учеников пользуются только одним видом транспорта?

Решение задачи № 1

Запишем коротко условие и покажем решение:

  • m (Е) = 40
  • m (А) = 20
  • m (В) = 18
  • m (С) = 18
  • m (А∩В) = 7
  • m (А∩С) = 8
  • m (В∩С) = 9

m (АВС) = 3 => m (АВС) = 40 – 3 = 37

Обозначим разбиение универсального множества Е множествами А, В, С (рис.5).

К1 – множество учеников, решивших только одну задачу по алгебре;

К2 – множество учеников, решивших только две задачи по алгебре и геометрии;

К3 – множество учеников, решивших только задачу по геометрии;

К4 – множество учеников, решивших только две задачи по алгебре и тригонометрии;

К5 – множество всех учеников, решивших все три задачи;

К6 – множество всех учеников, решивших только две задачи, по геометрии и тригонометрии;

К7 – множество всех учеников, решивших только задачу по тригонометрии;

К8 – множество всех учеников, не решивших ни одной задачи.

Используя свойство мощности множеств и рисунок можно выполнить вычисления:

Ответ:

5 учеников решили три задачи;

9 учеников решили только по две задачи;

23 ученика решили только по одной задаче.

С помощью этого метода можно записать решения второй и третьей задачи так:

Решение задачи № 2

Найти m (К1 ) + m (К3 ) + m (К7 )

Ответ:

Только одну контрольную работу решили 18 учеников.

Решение задачи № 3

  • m (Е) = 35
  • m (А∩В∩С)= m (К5 ) = 6
  • m (А∩В)= 15
  • m (А∩С)= 13
  • m (В∩С)= 9

Найти m (К1) + m (К3) + m (К7 )

  • m (К2 ) = m (А∩В) - m (К5 ) = 15-6=9
  • m (К4 ) = m (А∩С) - m (К5 ) = 13-6=7
  • m (К6 ) = m (В∩С) - m (К5 ) = 9-6=3
  • m (К1 ) + m (К3 ) + m (К7 ) = m (Е) - m (К4 ) - m (К2 ) - m (К6 ) - m (К5 ) = 35-7-9-3-6=10

Ответ:

Только одним видом транспорта пользуется 10 учеников.

Литература: А.Х. Шахмейстер «Множества. Функции. Последовательности»

Содержание статьи

МНОЖЕСТВ ТЕОРИЯ. Под множеством понимается совокупность каких-либо объектов, называемых элементами множества. Теория множеств занимается изучением свойств как произвольных множеств, так и множеств специального вида независимо от природы образующих их элементов. Терминология и многие результаты этой теории широко используются в математике, например в математическом анализе, геометрии и теории вероятностей.

Терминология.

Если каждый элемент множества B является элементом множества A , то множество B называется подмножеством множества A . Например, если множество A состоит из чисел 1, 2 и 3, то у него существует 8 подмножеств (три из них содержат по 1 элементу, три – содержат по 2 элемента, одно подмножество, по определению, есть само множество A и восьмое подмножество – это пустое множество, не содержащее ни одного элемента). Запись x О A означает, что x – элемент множества A , а B М A – что B является подмножеством множества A . Если универсальное множество, из которого мы берем элементы всех множеств, обозначить через I , то элементы, принадлежащие I , но не входящие в A , образуют множество, называемое дополнением множества A и обозначаемое C (A ) или A ў. Множество, не содержащее ни одного элемента, называется пустым множеством.

Над множествами можно производить операции, напоминающие операции, производимые в арифметике над числами. Объединением A B множеств A и B называется множество, состоящее из всех элементов, принадлежащих хотя бы одному из множеств A и B (элемент, принадлежащий множествам A и B одновременно засчитывается при включении в A B только один раз). Пересечением A B множеств A и B называется множество, состоящее из всех элементов, принадлежащих как A , так и B . Предположим, например, что множество I состоит из всех букв русского алфавита, A – из всех согласных, а множество B – из букв, встречающихся в слове «энциклопедия». Тогда объединение A B состоит из всех букв алфавита, кроме а , ё , у , ъ , ь , ы , ю , пересечение A B – из букв д , к , л , н , п , ц , а дополнение C (A ) – из всех гласных. Раздел теории множеств, который занимается исследованием операций над множествами, называется алгеброй множеств. Пустое множество играет в алгебре множеств роль нуля, и поэтому его часто обозначают символом О ; например, A O = A , A O = O .

Булева алгебра.

Алгебра множеств является подразделом булевых алгебр, впервые возникших в трудах Дж.Буля (1815–1864). В аксиомах булевой алгебры отражена аналогия между понятиями «множества», «событие» и «высказывания». Логические высказывания можно записать с помощью множеств и проанализировать с помощью булевой алгебры.

Даже не вдаваясь в детальное изучение законов булевой алгебры, мы можем получить представление о том, как она используется на примере одной из логических задач Льюиса Кэрролла. Пусть у нас имеется некоторый набор утверждений:

2831. Не бывает котенка, который любит рыбу и которого нельзя научить всяким забавным штукам;

2. Не бывает котенка без хвоста, который будет играть с гориллой;

3. Котята с усами всегда любят рыбу;

4. Не бывает котенка с зелеными глазами, которого можно научить забавным штукам;

5. Не бывает котят с хвостами, но без усов.

Какое заключение можно вывести из этих утверждений?

Рассмотрим следующие множества (универсальное множество I включает в себя всех котят): A – котята, любящие рыбу; B – котята, обучаемые забавным штукам; D – котята с хвостами; E – котята, которые будут играть с гориллой; F – котята с зелеными глазами и G – котята с усами. Первое утверждение гласит, что множество котят, которые любят рыбу, и дополнение множества котят, обучаемых забавным штукам, не имеют общих элементов. Символически это записывается как

    Михаил Раскин

    Современная математика в качестве своего основания использует теорию множеств. Традиционно при анализе теоретико-множественных тонкостей используется аксиоматика Цермело-Френкеля с аксиомой выбора, обозначаемая ZFC. На аксиому выбора опираются доказательства наличия базиса в любом векторном пространстве и существования неизмеримого множества в математическом анализе. К сожалению, теория множеств обязана работать и со множествами, которые не описываются достаточно подробно и конкретно, чтобы мы могли себе их представить. В курсе будет рассмотрен один пример, к чему это приводит. Оказывается, ценой ослабления аксиомы выбора можно получить теорию множеств, в которой любая ограниченная функция на отрезке интегрируема по Лебегу. То, что используется аксиома выбора, в каком-то смысле, произошло исторически. Курс основан на статье Р.М. Соловэя о построении теории множеств, в которой все множества вещественных чисел измеримы.

    Михаил Раскин

    В теории множеств есть несколько известных вопросов о том, следует ли из некоторых аксиом другая аксиома (или гипотеза; аксиома - это просто гипотеза, которой пользуется подавляющее большинство). Как и в других областях математики, недоказуемость можно продемонстрировать с помощью модели, в которой верны предположения, но не верна гипотеза. Для построения одного из самых известных таких примеров, модели теории множеств, в которой есть промежуточная мощность между мощностями натурального ряда и вещественной прямой, Коэн разработал метод вынуждения.

    Иван Ященко

    При развитии теории множеств, на которой базируется вся современная математика, возникали парадоксы. Например, парадокс брадобрея, формулируемый следующим образом: «Бреет ли себя брадобрей, если он бреет тех и только тех, кто сам себя не бреет?» В брошюре рассказывается о том, как теория множеств обходится с подобными ситуациями, а также о других парадоксах, в том числе возникающих при рассмотрении аксиомы выбора. В частности, вы узнаете, как из одного апельсина сделать два. Приведены задачи, самостоятельное решение которых поможет читателю более полно разобраться в материале. Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.

    Парадоксы являются следствием дихотомии языка и мышления, выражением глубоких диалектических (теорема Гёделя позволила проявить диалектику в процессе познания) и гносеологических трудностей, связанных с понятиями предмета и предметной области в формальной логике, множества (класса) в логике и теории множеств, с употреблением принципа абстракции, позволяющего вводить в рассмотрение новые (абстрактные) объекты (бесконечность), со способами определения абстрактных объектов в науке и т. п. Поэтому не может быть дано универсального способа устранения всех парадоксов.

    Уверены ли вы, что точно представляете себе бесконечность? Харизматичный математик Джеймс запросто убедит вас в обратном.

    Александр Буфетов

    В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.

    Юрий Лебедев

    Когда у меня в руках оказалась старая картонная папка, я был уже уверен, что в ней не вырезки из газет о «царице полей» кукурузе. И совершенно не удивился тому, что моя уверенность оправдалась. В папке находились рукописи или, точнее, черновики двух статей - «Принципы семиотической термодинамики», «Отказ от исключения» - и целая пачка других, для прочтения которых потребуется еще много усилий. Ни имени автора, ни даты написания на листках не было. Вероятнее всего, папку забыл кто-то из «дикарей» прошлых лет. Не имея возможности объясниться с автором, я решил предложить вашему вниманию свой вариант расшифровки одной из этих до крайности небрежно написанных неудобочитаемым почерком статей.

    Владимир Успенский

    Если в качестве значений переменных разрешается брать только элементы носителя, язык называют элементарным языком, или языком первого порядка. Если же в качестве значений переменных разрешается брать также функции и отношения, язык называют языком второго порядка. Выразительные возможности языков первого порядка довольно ограничены. Например, на языке первого порядка можно сообщить, что носитель содержит ровно 17 элементов, но невозможно выразить его конечность. На языке второго порядка выразить конечность носителя возможно. Возникает совершенно естественное недоумение: а зачем тогда пользоваться языками первого порядка с их бедными выразительными средствами, не лучше ли пользоваться языками второго порядка?

    Михаил Раскин

    Все мы знаем, что математика доказывает импликации. Другими словами, мы доказываем не то, что какое-то утверждение верно, а то, что оно следует из принятых нами аксиом. Но при этом часто недооценивается, насколько сильно можно поменять набор аксиом. Одно из базовых понятий математики, на которых видна степень условности выбора конкретного набора аксиом – понятие множества. Сначала оно казалось совершенно очевидным. К сожалению, этот подход привёл к противоречиям. После этого стали развиваться разные способы работать со множествами не приходя к парадоксам. Понятие множества используется во многих разделах математики, из-за чего работать со множествами обычно учат постепенно, по кусочкам добавляя факты как естественные и самоочевидные основы, пока не получится теория, носящая имя ZFC. Из-за этого часто оказывается заметён под ковёр тот факт, что ZFC лишь один из возможных вариантов и что замена оснований теории множеств совсем не обязана рушить другие разделы математики. Курс будет посвящён рассказу о том, что может быть проблемой при пользовании какой-то аксиоматикой и сколь разнообразны варианты. Предварительные требования будут изменены в соответствии со знаниями и интересами аудитории; я надеюсь, что обозначения →, ∀, ∨, ∈, ∈, ∪, … всё же всем знакомы и привычны настолько, что ошибочно кажутся понятными.

    Джордана Цепелевич

    Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств - так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.